Essence of kernel Fisher discriminant: KPCA plus LDA

نویسندگان

  • Jian Yang
  • Zhong Jin
  • Jing-Yu Yang
  • David Zhang
  • Alejandro F. Frangi
چکیده

In this paper, the method of kernel Fisher discriminant (KFD) is analyzed and its nature is revealed, i.e., KFD is equivalent to kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). Based on this result, a more transparent KFD algorithm is proposed. That is, KPCA is ;rst performed and then LDA is used for a second feature extraction in the KPCA-transformed space. Finally, the e=ectiveness of the proposed algorithm is veri;ed using the CENPARMI handwritten numeral database. ? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new kernel Fisher discriminant algorithm with application to face recognition

Kernel-based methods have been of wide concern in the ,eld of machine learning and neurocomputing. In this paper, a new Kernel Fisher discriminant analysis (KFD) algorithm, called complete KFD (CKFD), is developed. CKFD has two advantages over the existing KFD algorithms. First, its implementation is divided into two phases, i.e., Kernel principal component analysis (KPCA) plus Fisher linear di...

متن کامل

Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms

This paper presents appearance based methods for face recognition using linear and nonlinear techniques. The linear algorithms used are Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The two nonlinear methods used are the Kernel Principal Components Analysis (KPCA) and Kernel Fisher Analysis (KFA). The linear dimensional reduction projection methods encode pattern in...

متن کامل

Semi-Supervised Kernel PCA

We present three generalisations of Kernel Principal Components Analysis (KPCA) which incorporate knowledge of the class labels of a subset of the data points. The first, MV-KPCA, penalises within class variances similar to Fisher discriminant analysis. The second, LSKPCA is a hybrid of least squares regression and kernel PCA. The final LR-KPCA is an iteratively reweighted version of the previo...

متن کامل

A New Feature Extraction Method Based on the Information Fusion of Entropy Matrix and Covariance Matrix and Its Application in Face Recognition

The classic principal components analysis (PCA), kernel PCA (KPCA) and linear discriminant analysis (LDA) feature extraction methods evaluate the importance of components according to their covariance contribution, not considering the entropy contribution, which is important supplementary information for the covariance. To further improve the covariance-based methods such as PCA (or KPCA), this...

متن کامل

Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms

This paper presents appearance based methods for face recognition using linear and nonlinear techniques. The linear algorithms used are Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The two nonlinear methods used are the Kernel Principal Components Analysis (KPCA) and Kernel Fisher Analysis (KFA). The linear dimensional reduction projection methods encode pattern in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2004